
AD-I46 887 PROGRAM ISUALIZTION: GRAPHICS SUPPORT FOR SOFTWARE
vi

DEVELOPMENT(U) COMPUTER CORP OF AMERICA CAMBRIDGE MA
A SSIFIED HEROT ET AL. 28 SEP 84 N09814-8i-C-0456IUNCL A .7ED G 9/ N

MENNEEN~hh

2.5.

23.2-

3.6.

LAD8 L

1.8-

..'

111.!2 _L

-

': -.1 d

Contract N00014-81-0456; NR 049-495

000

PROGRAM VISUALIZATION:
(0 GRAPHICS SUPPORT FOR SOFTWARE DEVELOPMENT7.

~ Christopher F. Herot
I Gretchen P. BrownO Richard T. Carling

~ David A. Kramlich

Computer Corporation of America
4 Cambridge Center
Cambridge, Massachusetts 02142

28 September 1984

Final Report

Prepared for

Defense Advanced Research Projects Agency
Defense Sciences Office
Systems Sciences Division

OFFICE OF NAVAL RESEARCH
800 N. Quincy Street
Arlington VA 22217 D I

ELECT

SOCT 2 91984~

-J 7 Approvee for public release;
L~a....Distribution Unlimited

84 10 18 014
.............

Contract N00014-81-0456; NR 049-495

PROGRAM VISUALIZATION:-
GRAPHICS SUPPORT FOR SOFTWARE DEVELOPMENT

Christopher F. Herot
Gretchen P. Brown
Richard T. Carling
David A. Kramlich

Computer Corporation of America
4 Cambridge Center t-
Cambridge, Massachusetts 02142

28 September 1984

Final Report

Prepared for

Defense Advanced Research Projects Agency
Defense Sciences Office
Systems Sciences Division

OFFICE OF NAVAL RESEARCH D I800 N. Quincy Street E E T
Arlington VA 22217 rce-so For

PTlf' TAB
Unannou.;nced El
Just, f C-" t on .

Distr~b >on/_

Av, 11, ity Codes
and/or

Dist ea

'6?iciass-iriec

I. ORIGINATING ACTIVITY (Cospmee oaihas)W.RPTSEUIYCAIFAIO

Cnbridge. MA Q2142
3. REPORT TITLZ

PROGRAM VISUALIZATION:

GRAPHICS SUPPORT FOR SOFTWARE DEVELOPMENT
4. DESCRIPTIVYE -OEs(~pe port and incl~uive deto)

Final Repart
S. AU TmORIS) (First nome, widdle initi, last name)

Christopher F. Herot, Gretchen P. Brown, Richard T. Carling, David A. Kramlich

4. REPORT DATE 7.TTLN.O AE 6 O FMP

28 September 1984
5CON TRACT OR GRANT NO. So. ORIGINA TOm'S REPORT NUbtUERIS)

N00014-8 1-0456
b. PRtOiECT NO0.

NR049-495 ________________________

C. S9b. OTHER REPORT NOIS) (Ant @Uaethumbere aol awy be assigned
at& report)

10. OISTRIOUTION STATEMENT

Distribution of this document is unlimited

111. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Defense Advanced Research Projects Agency
Defense Sciences Office

___________________________________ SystemsSciencesDivision
1S. ADSTRACT

).,This document is the final report on the design and implementation of a
program visualization (PV) environment, intended to offer the user an integrated
graphics programming support system. The PV environment has capitalized on
recent progress in the graphical representation of information, to provide
designers and programmers with both static and dynamic (animated) views of
systems. The PV research prototype supports programming in C, although large
portions of the system are independent of the software development language.\

pow 1473 :re"~ "'"idj,# Unclassified %
UwMy Classification

Unclassified
Security Classification________

14. LINK A LINK 9 LINK C
KEY WORDS

ROLE WT ROLE WT ROLE WY

programming workstations, graphics, integrated
environments, software engineering, computer
aftimation, program instrumentation

TUnrla~ifirl
Security Classification

Program Visualization
CONTENTS

CONTENTS

Page

1. INTRODUCTION 1

2. CATEGORIES OF VISUALIZATIONS 3

3. OVERVIEW OF THE PV ENVIRONMENT 7

4. MANIPULATION OF STATIC AND DYNAMIC DIAGRAMS 11

4.1 Graphics Editor for Static Diagrams 11
4.2 Creation and Control of Dynamic Diagrams 15

5. DISPLAY AND MANIPULATION OF TEXT 17

6. MULTI-DIMENSIONAL INFORMATION SPACE 19

7 . LIBRARY OF DIAGRAM AND TEXT COMPONENTS 23

7.1 Types of Components in the Library 23
7.2 Overview of Library Organization 24
7.3 Library Access 27

8. MONITORING RUNNING PROGRAMS 29

8.1 Minimizing Special Requirements 29
8.2 Efficiency 30

9. CONCLUSIONS 33

10. REFERENCES 35

11. PUBLICATIONS AND MAJOR PRESENTATIONS 37

Program Visualization
INTRODUCTION Section 1

1. INTRODUCTION

Some programs are so simple and so unimportant that
they can be conceived, developed, used, and possibly
thrown away in a single sitting at an interactive computer
terminal. The art of conversational programming has been
developed to facilitate such expression.

However the bulk of programs upon which society
relies are complex. They have been developed and refined
by many individuals working over many years. They may not
now be understood by any single person -- they may never
have been understood by any single person.

, The gnal of program visualization is to facilitate
the understanding of programs by people. To visualize
means-'f see or form a mental image of&. Successful pro-
gram visualizations aid programmers in the formation of
clear and correct mental images of the structure and func-
tion of programs.<

Program visualization can be useful in all of the
stages of a program's lifecycle:

1. in listing the reAuirements that the program must
satisfy;

2. in specifying the design of a software system to meet
the requirements;

3. in carrying out the c of the system following
the plan of the design;

4. in testing and dbugging the code, to guarantee that
it conforms to the design and fulfills the require-
ments;

5. in the mntenance of the system, to keep it func-
tioning despite changes in the requirements and the
discovery of new bugs; and

6. in helping the end-user use the program by showing
how it operates and how it arrived at the results it
presents.

"': -i-

- ..-- ,. • - ..

Program Visualization
Section 1 INTRODUCTION

The challenge of a research program in program visu-
alization (abbreviated here as "PV") is to encompass these
separate phases of the software development process within
a unified conceptual framework in a way which benefits
rather than burdens the user at each stage in the
program's lifecycle.

This document is the final report for ONR Contract
Number N00014-81-C-0456, covering work from May 1981
through October 1983. In addition to the authors, contri-
buters to the project included Paul Souza (WGBH TV),
Rebecca Allen (New York Institute of Technology), Ronald
M. Baecker (Human Computing Resources Corporation), and
Aaron Marcus (Aaron Marcus and Associates).

The Program Visualization project included both
research and system-building components. Section 2
enumerates different types of program visualizations,
listing the visualization types supported in the PV system
prototype. Section 3 gives an overview of the PV environ-
ment, identifying four classes of capabilities that are
discussed in the four sections (4-7) that follow it. Sec-
tion 8 describes one solution to an important technical
problem in program visualization, the need to monitor
large running programs in order to detect the updates to
be displayed.

A copy of a videotape showing the PV research proto-
type in operation has been submitted as a supplement to
this report.

-2-

..

.

Program Visualization
CATEGORIES OF VISUALIZATIONS Section 2

2. CATEGORIES OF VISUALIZATIONS

It is our claim that although graphics has long been
a tool in program development and documentation, the full
power of graphics has yet to be acknowledged or exploited.
We have identified ten categories of program illustrations
that, together, can be of use throughout the software r
lifecycle. Some categories of illustrations have already
been well explored with respect to programs, and the PV
project was able to draw on this work directly. Other
categories have been less thoroughly explored. The ten
categories are:

1. System requirements diagrams
2. Program function diagrams
3. Program structure diagrams
4. Communication protocol diagrams
5. Composed and typeset program text
6. Program comments and commentaries
7. Diagrams of flow of control --

8. Diagrams of structured data
9. Diagrams of persistent data

10. Diagrams of the program in the host environment

Many of these categories can apply to either the 91"o-
ga, its specific activations, or its data. Moreover,
illustrations can be either static or dnami . Static
illustrations portray the program at some instant of exe-
cution time, or they portray those aspects of a program
which are invariant over some interval. Dynamic illustra-
tions portray the progress of an executing program. The
categories of visualization listed are discussed more
fully in (8].

In earlier work [9] done in collaboration with

18] Herot, C.F., Brown, G.P., Carling, R.T., Friedell,
M., Kramlich, D., Baecker, R.M., An Integrated Environ-
ment for Program Visualization, in Schneider, H.J. and
Wasserman, A.I. (eds.), Automated Tool Lnr Informatin
Syst D-eigr North Holland, Amsterdam (1982).

(9] Herot, C.F., Carling, R.T., Friedell, M., Kramlich,
D., Design for a Program Visualization System, Technical

--

Program Visualization
Section 2 CATEGORIES OF VISUALIZATIONS

experts in graphic design, we described program visualiza-
tion formats from a number of different categories. Under
the current contract, static visualizations were created
for the majority of the categories above. We chose to
focus, however, on dynamic visualizations, because rela- -.

tively little work had been done in that area.* Within
dynamic visualizations, most of the visualizations created

Report CCA-81-04 (January 1981), Computer Corp. of Ameri-
ca, Cambridge, MA.

• The pioneering work in dynamic program visualization
includes:

Balzer, R.M., EXDAMS - EXtendable Debugging and Monitor-

ing System, AFIPS Joint Spring Cmputer Conference (1969) -
567-580.

Baecker, R.M., Two Systems which Produce Animated
Representations of the Execution of Computer Programs,
A0?1 SIGSE Bulletin, 7, 1 (Feb. 1975) 158-167.

Dionne, M.S. and Mackworth, A.K., ANTICS: A System for
Animating LISP Programs, Computer Graphics and Image Pro-
cessing, 7 (1978) 105-119.

Galley, S.W. and Goldberg, R.P., Software Debugging: The
Virtual Machine Approach, Proceedings: ACM Annual Confer-
ence (1974) 395-401.

Knowlton, K.C., L6: Bell Telephone Laboratories Low-Level
Linked List Language, two black and white films, sound
(Bell Telephone Laboratories, Murray Hill, New Jersey,
1966).

The major recent work includes:

Baecker, R.M., Sorting Out Sorting, 16mm color, sound, 25
minutes (Dynamic Graphics Project, Computer Systems
Research Group, Univ. of Toronto, 1981).

7
Brown, M.H. and Sedgewick, R, A System for Algorithm Ani-
mation, Cmputir Graphics, 18, 3 (July 1984) 177-186.

Myers, B.A., Incense: A System for Displaying Data Struc-
tures, Cmputer Graphics, 17, 3 (July 1983), 115-126.

Iom

-4-

.
[.7...... ..-... ., -..-......................... •.......... •. ..

. .- . o° •• . . •. •.-... - - _

Program Visualization
CATEGORIES OF VISUALIZATIONS Section 2

came from the category of depictions of structured data.
Structured data presents a considerable challenge for
visualization, because it takes so many forms. The PV
prototype currently supports the display of simple vari-
ables, one and two dimensional arrays, linked lists, and
trees. Dynamic views of flow of control were given a
secondary priority because, on the whole, depictions of
control flow do not need to be as varied as depictions of
data. The PV prototype currently supports highlights mov-
ing through code to indicate the line being executed; much
of the underlying mechanism is in place to support exten-
sion to additional views of control flow. Some photo-
graphs taken from the prototype are shown in [15].

115] Kramlich, D., Brown, G.P., Carling, R.T., Herot,
C.F.v Program Visualization: Graphics Support for
Software Development, AC)1/1EY 20_tb Deign Auitomation
Cnfer.ence (June 27-29 1983) Miami Beach, Florida. ~:

p .p..- --

Program Visualization
Section 2 CATEGORIES OF VISUALIZATIONS

-6

K.

-6-..

N. - . N.

Program Visualization
OVERVIEW OF THE PV ENVIRONMENT Section 3

S

3. OVERVIEW OF THE PV ENVIRONMENT

The current workstation for the Program Visualization
system consists of three medium-resolution AED 512 color
displays. The user interacts with the system via a combi-
nation of data tablet with four-button puck, keyboard, and
touch sensitive devices on the displays. The display ,
arrangement is flexible, and design work was completed to
move to a single high-resolution color display.

A programmer uses the PV system via a menu-oriented
user interface that displays diagrams and text in multiple
windows on the screen. The current PV window system is in
the spirit of [17], which has been widely replicated. S
Information access in the PV system is aided by diagrams
acting as spatial navigational aids, in the manner
pioneered in [10]. The PV system has been prototyped to
support programming in C, although large portions of the
system are independent of the software development
language. The implementation runs on a VAX 11/780 under .
Berkeley UNIX.

The PV environment has been designed as an
"umbrella", in the sense that it is not targeted to sup-
port a single software development methodology. Basic
program visualization tools can be used in the service of
the programmer's chosen methodology. For this reason, the
system supports the following:

- Manipulation of static and dynamic diagrams of computer
systems

[17] Teitelman, W., A Display Oriented Programmer's As-
Si Stan t, Fifth International Joint Conenc Dn~ Artifi-
QW~a Intelligence (1977) 905-915.

(10] Herct, C.F.r Carling, R.T., Friedell, M., Kramlich,
D.r A Prototype Spatial Data Management System, SIGAPk1
11M. Pro.eeding.A: A&k1/SIGGR&Ak Cnferenc (1980) 63-70.

-7-.

• ..
. ,.;.

Program Visualization
Section 3 OVERVIEW OF THE PV ENVIRONMENT

- Manipulation of program and documentation text

- Creation and traversal of a multi-dimensional informa-
tion space

Reuse and dissemination of tools via a library of
diagram and text components (e.g., templates)

The remainder of this section contains an introduction to
these facilities. The modules named are illustrated in
the PV architecture diagram in Figure 1.

Manipulation of Sta±t Ad Dnmic Dagran ms f Cmpu r

To create, edit, and view static diagrams, the
programmer/user invokes the Graphics Editor. The Graphics
Editor provides a high level graphics language and gives
the programmer access to prespecified diagram components
(e.g., templates and collections of notational symbols) in
the Library. The projected PV system would provide an
optional automated visualization planning capability, per-
forming functions such as selecting colors, sizing and
positioning objects, and positioning labels. The current
prototype has a limited facility for automatic sizing and
positioning of objects within dynamic displays of data
structures.

To create, edit, and view dynamic diagrams of pro-
grams, the programmer uses the Dynamic Object Controller.
The creation of dynamic diagrams can be semiautomatic; in
particular, the programmer can point to variables in his
or her C code and the system will automatically select
appropriate diagrams to display them. Alternatively, the
user can build or select diagrams and bind diagrams to
code with the Binder. In either case, when the programmer
finally runs the program, the Execution Manager in the
Dynamic Object Controller will monitor the running code to
activate the visualization.

All diagrams are currently stored in the UNIX file
system. The projected PV system would provide a design
database to store diagrams and associated text.

Manipulation Qf jrogra And Documentation Text

The programmer can use the PV system to create and
manipulate static text and also dynamic text (e.g.,
highlights moving through code to indicate flow of con-
trol).

-.

So. , -.

' ...o
•

. , ° . , ', '..

Program Visualization
OVERVIEW OF THE PV ENVIRONMENT Section 3

VISUALIZATION
LIRARY _4PLANNER

IMAGE 1
GENERATORj

IEXECUTION PEMil LIOGE]
MANAGER

Figure 1. Architecture of the Program Visualization System.

-9-

Program Visualization
Section 3 OVERVIEW OF THE PV ENVIRONMENT

To create and manipulate static text, the programmer
invokes the Text Editor. This text editor is an implemen-
tation of EMACS enhanced for the purposes of the PV
environment. EMACS was chosen because of its power and
extensibility. Labeled keycaps on terminal function keys
simplify the use of the text editor. Text (including
code) files are stored using the UNIX file system, with
the PV system providing additional spatial file access
mechanisms.

To create and manipulate dynamic text, the programmer
invokes the Dynamic Object Controller.

Creationad rnaveral DI A Mlti-DPimensionI Information

Fundamental to the programmer's ability to use the
system is an information integration mechanism that allows
convenient access to the quantities of diagrams and docu-
ments that are part of a large-scale system development
effort. The PV system provides a multi-dimensional infor-
mation space in which the programmer can establish links
between graphic and textual information. For example, a
user viewing a program structure diagram can "zoom-in" on
program illustrations, moving from one level of abstrac-
tion to another, until at the most detailed level the pro-
gram code is displayed.

Lrar Diagram And Text Cmpnnts Template-)

Individual programmers or groups of programmers can
add useful graphic and text components to the PV Library.
The Library is a network of programming and graphics com-
ponents accessible spatially, via a library organization
diagram that acts as a navigational aid. Through the
Library, the PV system supports efforts to standardize and
share graphic notations and it supports the re-use of both
code and illustration segments.

The PV system, then, is designed as a comprehensive
software development environment that supports the crea-
tion and manipulation of both code and its accompanying
graphic documentation. The four classes of facilities in
the PV environment are discussed in more detail in each of
the following four sections.

-10-

. '

Program Visualization
MANIPULATION OF STATIC AND DYNAMIC DIAGRAMS Section 4

4. MANIPULATION OF STATIC AND DYNAMIC DIAGRAMS

The PV prototype supports the creation and manipula-
tion of both static and dynamic diagrams. Each is dis-
cussed in turn.

4.1 Graphics Editor for Static Diagrams

The user begins using the graphics editor by invoking
the command to create a graphics window. This results in
the display of an empty rectangular background whose
color, size, and location are specified by the user. The
user may either work on a single window or alternate
between several different windows. Windows may overlap or
completely obscure each other; obscured windows are viewed
via a cycle-window command that sequences through the pile
of windows. The option to have diagrams larger than the-
size of the screen, presenting a portion at a time in a
window, was designed but not implemented (due to time con-
straints) in the prototype system.

The graphics editor supports two methods of diagram
creation:

1. drawing/specification

2. assembly

The drawing/specification method is used to create
graphic objects from scratch. Assembly allows the crea-
tion of objects using pre-existing components, usually
entailing considerable time savings. Drawing and specifi-
cation are treated as a single method because they form a
continuum. For example, specifying a straight line by
pointing to the two endpoints is such a natural activity
that one does not think much about the fact that the line
itself is "drawn" by the graphics system rather than the
user. Most of the specification currently supported in ..
the PV prototype involves pointing to other objects to
indicate relationships or pointing to locations.

2. assemb.

Program Visualization
Section 4 MANIPULATION OF STATIC AND DYNAMIC DIAGRAMS

The assembly method of diagram creation is simple to
understand. To assemble pre-existing components, either
whole components or parts of components can be copied into
a diagram from other windows. In particular, components
can be copied from the Library, a section of the PV infor-
mation structure supporting the standardization and re-use
of graphic (as well as code) components. Three types of
component are used with the copy operation: building
block, template, and kit. Building blocks are the sim-
plest structures, although they may be complex visually.
An example of a building block would be a graphic icon
used as a label. Templates are objects with slots that
the user may fill with text, or in some cases graphics.
Kits are mixed collections of building blocks and tem-
plates. To take a familiar example, standard flowchart
notation might be implemented as a kit. The user would
then create flowcharts by copying symbols from the kit to
the diagram window, filling text in slots as necessary.
Connectors would be created by selecting a connector sym-
bol from the kit and specifying the end points of the con- 7.

nector.* If the user wished to revise a flowchart diagram,
he or she could use diagram editing commands described
later in this section.

For drawing/specification, the system's main model of
graphic objects is structural, i.e., it represents graphic
components as named entities that have parts and subparts.
The system also supports a secondary, vector model used
for detail drawing to give specific visual or symbolic
characteristics of an object. Finally, a third graphic
model, the character model, is supported for text in the
form of labels and short comments. The difference between
the structural and the vector model becomes clear if one
thinks of four lines drawn to form a square. In the vec-
tor model, if a person points to a place inside the square
and close to one of the lines, we would assume a reference
is being made to that closest line. In the structural
model, pointing to this same place (or to anywhere within
the square) would constitute a reference to the object as

In the prototype, all connector drawing is done through
commands on the menu. The ability to include connectors
as separate symbols in kits was not implemented as part
of the prototype, although it is clearly desirable when
different line colors, weights, and textures are avail-
able as options. Further work in this direction, along
with work on automatic routing of complex connectors,
would be desirable.

-12-

Program Visualization
MANIPULATION OF STATIC AND DYNAMIC DIAGRAMS Section 4

a whole. In the vector model, a move command would result
in one line moved away from the other three. In the
structural model, all four lines and the space they
enclose would move.

For the structural model, the current PV prototype
supports the creation of rectangles, circles, and
polygons.* The user designates an object as part of
another by pointing to the parent object at the time the
object is created. This explicit reference allows parts
to overlap or to be partially outside the boundaries of
their parent part. This is a useful feature when objects
are first created, to allow the user to experiment freely
with part sizes. The user designates connectors between
objects by either drawing them directly or selecting an
option that causes the system to draw straight line con-
nectors for the user. Note that connectors are logical
constructs rather than purely graphic ones. When an
object is moved, any of its associated system-generated -
connectors are redrawn to reflect the new position. A
final type of object in the structural model is the
"slot", used for constructing templates. Slots are rec-
tangular objects that the user creates by specifying two
points and giving a name.

For the vector model, the PV prototype supports the
creation of lines of different weights, circles, and
filled regions. For the character model, the system sup-
ports a choice of text fonts (MIT shaded fonts, Berkeley
fonts, and those available on the host hardware). For all
models, graphic object construction is aided by user-
specified rectangular grids, both global grids associated
with entire diagrams and local grids associated with indi- - "
vidual parts. Grids are specified by either pointing to
two points (to indicate the box size) or keying in the
number of vertical and horizontal divisions of the space.
Color mixing is supported in the RGB model by selecting
positions on three color bars.

• Support for polygons is somewhat limited in the PV pro-
totype because the hardware that we were using did not
support polygon generation in the firmware. Since
firmware support for polygons is now common in graphics
hardware, duplication of this work in software was given
low priority.

-13-
• T . . .]--:~-:-, .--

Program Visualization
Section 4 MANIPULATION OF STATIC AND DYNAMIC DIAGRAMS

Besides creation of graphic objects, the system sup-
ports manipulation operations: copy, move, resize, delete,
and recolor.* These operations have two options. Choosing
one option causes the operation to apply only to the part
the user has pointed to; choosing the other option causes
the operation to apply to the part and all its subparts
recursively. Although both options apply to each opera-
tion, the default differs. For example, it is more common
to recolor a single part than to recursively recolor (in a
single color). Alternatively, it is more common to delete
recursively than to delete a containing part out from
under its subparts. (For simple parts, of course, dele-
tion behaves the same either way.)

A set of dual-option commands paralleling the set of
object manipulation commands is provided for graphic text.
Thus, blocks of graphic text may be manipulated either
individually or recursively. The current unit of text
that can be manipulated in this way is defined with
respect to an object or part, although extension to a
lower level of granularity may be desirable.

In addition to creating and manipulating graphic
objects, the user can create links between graphics and
text or between two levels of graphics. These links are
discussed in Section 6. An object-info command displays
the status of each object: name, graphic properties, and
existing links. When the user wishes to stop editing,
diagrams can be named and saved for later use.

• The structural and vector models are represented by two
parallel sets of manipulation commands. The PV prototype
fully implemented the manipulation commands for the
structural model. There are some gaps in coverage for
manipulation commands in the vector model, although the
basic create and move commands are in place. Support for
the vector model within PV was given low priority because
we were able to use a separate graphic editor previously
implemented at CCA. Note that a single set of commands
could be used for both models if two different modes were
introduced. The use of parallel command sets was helpful
for development, since we did not know if the sets would
ultimately need to diverge. The need to treat structural
and vector manipulation separately is obvious from the
example of the square cited above. In that case, point-
ing to the same place could mean two different referents
according to which model the user is assuming.

-14-

.. :,......±, o- ..- -••.-.- •..... . ' ._.-.-.. ---......................................

Program Visualization
MANIPULATION OF STATIC AND DYNAMIC DIAGRAMS Section 4

4.2 Creation and Control of Dynamic Diagrams

The project focused on dynamic views of structured
data, due to the challenge presented by the many forms
that data can take. The types of dynamic graphics sup-
ported in the prototype are:

1. in-place updates of values

2. indicators moving on vertical or horizontal scales

3. data cells created, rearranged, and deleted to
reflect different pointer relationships

xo specify dynamic graphics, the user must supply
enough information for the system to establish correspon-
dences between the code and the static graphic components
of the dynamic visualization. We refer to this process as
"binding". There are two binding methods, paralleling the
two methods for static object creation: the user may
either draw/specify the binding from scratch or he or she
may assemble the binding by combining pre-bound com-
ponents.

To create a binding from scratch, the user first

creates any necessary static components using techniques
described above. Taking a simple example, a user wishing
to display an integer might create a special cell that
shows the variable name and indicates the type and preci-
sion. Once the necessary static components have been
created, the user accesses a pop-up menu of dynamic types
and selects the type desired. In the current prototype,
binding for each dynamic type is done by a discrete sub-
routine which asks the user questions appropriate to the
type. Questions relate to the type, range, and related
properties of a data structure as well as the graphic
regions in which information~ is to appear. While the
discrete subroutine approach was useful for the early
stages of the work, it is desirable to replace the fixed
binding protocols by more flexible interactions. A
forms-oriented interface would allow the user to order the
interactions, and it would permit more sharing of binding
code across dynamic types.

Once the user has finished the binding for each com-
ponent in the visualization, this information remains
associated with the graphic objects. This not only

-15-

. .Uo O.-

Program Visualization
Section 4 MANIPULATION OF STATIC AND DYNAMIC DIAGRAMS

permits dynamic visualization specifications to be saved
for re-use, but it also permits dynamic graphic components
to be "packaged" so that they can be used in other assem-
blies. Thus, creation by assembly works for dynamic as
well as static graphics. This supports the cluster capa-
bility described in Section 7, whereby a code template and
a corresponding graphic template can be pre-defined
(including dynamics) and then inserted in the code and the
visualization, respectively. To complete that part of the
visualization, the user need only fill in specifics, such
as the name of the variable. Use of such a cluster to do
binding "by assembly" is illustrated in the videotape that
accompanies this report.

To view dynamic visualizations once they have been
created, the system provides both speed control and step-
ping. Viewing speed is controlled by a bar on the menu,
which the user can lengthen or shorten to get different
percentages of the maximum speed. Since absolute times
are not particularly meaningful in this context, we chose
to mark only quarters on the bar, although finer grada-
tions may be selected. For stepping, the visualization is
displayed one step at a time, in the lowest level of
granularit currently displayed. Thus, if program code is
displayed, the system behaves like the standard step mode
and executes one line, waiting for a user signal (in this
case a button-push) to continue. If, however, only a
visualization of one data structure is displayed, then the
pauses come only each time the data structure is updated.
This is an important capability, because it lets the user
move from very general view of the program to very local-
ized view merely by selecting different diagrams. It also
permits the user to view program execution from the per-
spective of selected data structures, either key data
structures or those that are of current, temporary
interest for debugging.

The PV prototype, then, embodies a representative set
of dynamic types that can be used for common data struc-
tures such as numeric variables, arrays, linked lists, and
trees. This area deserves further research, both to
extend the coverage of dynamic types and to increase the
sophistication of the animation techniques available.
Besides visual polish, more sophisticated animation tech-
niques can add considerably to the clarity and comprehen-
sibility of the dynamic visualization, particularly for
large data structures.

-16-:-.

Program Visualization
DISPLAY AND MANIPULATION OF TEXT Section 5

5. DISPLAY AND MANIPULATION OF TEXT

Due to the magnitude of the task of PV system design
and implementation, we made a pragmatic decision to incor-
porate existing non-graphic software development tools.
In the case of text editing, this decision lead to a work-
able arrangment, although one with less integration of
graphics and text than we would have liked. This section
briefly describes text handling within the PV prototype,
followed by some comments on desirable directions for the
future.

The text editor chosen for the PV prototype was
EMACS, in the form of CCA's EMACS implementation for L
Berkeley UNIX. EMACS was selected because of its power
and because of the support it gives programmers in custom-
izing their editing environment. The PV project funded
extensions to CCA EMACS to achieve a closer coupling
between text and graphics. One such extension allowed
extraction of enough information from C code to permit a
simple level of pattern matching on variable declarations.
This pattern matching was used in automatic access of a
graphic depiction appropriate to the variable type.
Another extension was the addition of EMACS "picture
mode", which permits the user to manipulate text as a
two-dimensional object. This mode provides an alternative
to the line-oriented "one-dimensional" mode that is stan-
dard to EMACS. From the PV user's point of view, the two
dimensional model is closer to the model used for graph-
ics, and it is useful for certain types of editing.

In the PV prototype, text is displayed in three types
of windows:

1. EMACS

2. UNIX shell

3. read-only text or code

EMACS windows allow the text to be edited, with viewing
controlled by the standard EMACS commands to page through
files. Text is currently stored in the UNIX file system.
Shell windows display the UNIX C-shell command prompt and

-17-

Program Visualization
Section 5 DISPLAY AND MANIPULATION OF TEXT

permit users to execute the full range of commands and
application programs that have non-graphic output.
Finally, read-only windows are used for temporary displays
of text or code displayed for the user's information or
for the user to verify.

One use of EMACS windows is in the display of dynamic
text, e.g., code with moving graphic indicators
(highlights or arrows) to indicate the progress of the
execution of a program. The current prototype supports
the dynamic display of one level of code in a window,
although extension to show subroutine execution is possi-
ble. Once dynamic text is extended to multiple windows,
it would be straightforward to couple the text display
with a stack diagram and a highlighted program structure
diagram. The PV prototype provides the basic framework to
support these extensions (see Section 8).

We mentioned that integration of graphics and text,
while acceptable, is less extensive than we would have
liked. One capability that would be desirable is the
ability to assign a fuller range of graphic attributes to
program text, which has been explored by Baecker and
Marcus [2]. Another desirable capability is structure-
editing for both code and formatted text. Incorporation
of a structure editor in the spirit of [16] would be par-
ticularly useful for handling templates and for specifying '""
pattern matches for automatic library accesses (e.g., find
a graphic depiction that matches information in a variable
declaration).

7 7

(2] Baecker, R.M. and Marcus, A., On Enhancing the In-
terface to the Source Code of Computer Programs, Huma.
Factors in Compuing Systems, CHI83 Conference Proceed-
ings, Association for Computing Machinery, New York
(1983) 251-255.

(163 Teitelbaum, R.T., The Cornell Program Synthesizer: A
Microcomputer Implementation of PL/CS, TR 79-370 (1979),
Department of Computer Science, Cornell Univ.

-18-

Program Visualization
MULTI-DIMENSIONAL INFORMATION SPACE Section 6

6. MULTI-DIMENSIONAL INFORMATION SPACE

The multi-dimensional information space provided by
the PV system permits the programmer to establish links:
diagram to diagram, text to text, diagram to text, and
text to diagram. Links are associated with the whole or
with individual parts of the diagrams or text. These
links are then traversed by the user by selecting a "zoom"
command and then pointing to the relevant object, object
part, text file or text section.

Links are created by the user by selecting from a
menu of relationships. The user then points to the
objects that participate in that relationship or, if a
destination object is not currently shown, its name is
keyed in. The relationships currently supported within
the PV prototype are:

1. source: graphics to code

2. object: graphics, text or code to graphics

3. documentation: graphics or code to text

4. notes: anything to text

uther code to code relationships were implemented for
experimentation. In the prototype, the user follows links
by selecting a command of the appropriate link type and
then pointing to an item (graphic, text or code) displayed
on the screen. One special command, "zoom", is intended
for following object links that relate items at two dif-
ferent levels of detail.

In keeping with PV's role as an umbrella system, a
desirable (and straightforward) extension would be to
allow the user to define new binary link types. Another
desirable extension is support for simple type checking of
link parameters when the links are established.

The links provided by the PV system are intensionally
general enough that they make few constraints on the type "
of information relationships that can be specified. In
working with the PV prototype to build examples, however,

-19-

- '- .
•

Program Visualization
Section 6 MULTI-DIMENSIONAL INFORMATION SPACE

we followed the approach used in SDMS [10]. In our exam-
ples, the dominant information organization is hierarchic.
Other non-hierarchic relationships are then used as
needed. That is, the dominant motion through the informa-
tion space is "zooming in" on graphic objects to get a
more detailed view of a particular section.

For the PV prototype, we suggested a core set of four
hierarchies: system requirements, structure, evolution
(i.e., version control), and the library. The first three
of these hierarchies are project-specific collections of
information about the system being developed by the user.
The fourth hierarchy, which is shared by all users of the
PV system, is described in the next section. Note that
the project-specific hierarchies are suggested as
defaults, and additions corresponding to any of the steps
in the software lifecycle would be appropriate.

We have called the top level diagram for each hierar-
chy the navigational aid, or navaid. This term is bor-
rowed from SDMS, where navaids present visual context for
detailed views and they give a means for moving around an
information space to select more detailed views. Although
the PV navaid is not exactly equivalent to the SDMS one,
we use the term to emphasize the role of the top level
diagrams as a map of their respective information spaces.
For example, the system structure navaid might show a top
level structure diagram in the user's prefered graphical
notation. A more detailed diagram is then associated with
each module, with this process continuing to the depth
needed. At the most detailed level the user might then
attach the actual code. The navaid diagram can serve as a
starting point for access to any part of the structure
hierarchy, and so it acts as a global map.

To keep the user from getting lost as he or she moves
between levels of the hierarchies, there is also a need
for immediate context. Clear diagram labeling and number-
ing schemes are important aids; the project designed
graphic icons for the suggested hierarchies so that each
window could be labeled with the hierarchy to which it
belonged. Again applying techniques from SDMS, we found
it helpful to display with each diagram a miniaturized
view of the diagram above it in the hierarchy. The

1101 Herot, C.F., Carling, R.T., Friedell, M., Kramlich,
D., A Prototype Spatial Data Management System, SIGGRPH.&

-20-

Program Visualization
MULTI-DIMENSIONAL INFORMATION SPACE Section 6

miniaturization has a "you are here" region marked, and a
set of bars on the side show the current depth in the
hierarchy.* One question that needs to be investigated is
whether these miniaturized views should only reflect
static hierarchic relationships or whether they should
instead reflect the path that the user took to access the
information during the current session. That is, if
access was via a cross-hierarchy link rather than via
zooming, is it most useful to see a miniaturization of the
hierarchic context or the access context.

In summary, the PV system provides a multi-
dimensional information space that aims to be neutral with
respect to the information structures defined. The sug-
gested mode of use, however, is to construct a set of
hierarchies, interrelated by cross-links as necessary.

*A small amount of additional code would be necessary to
completely support this feature in the prototype.

-21-

. . -.-. -.

Program Visualization
Section 6 MULTI-DIMENSIONALJ INFORMATION SPACE

-22-

Program Visualization
LIBRARY OF DIAGRAM AND TEXT COMPONENTS Section 7

7. LIBRARY OF DIAGRAM AND TEXT COMPONENTS

The PV Library is a collection of code, text, sym-
bols, and diagrams shared by users of the PV system. It
is the repository for code components (e.g., code tem-
plates) for individual projects as well as for general
design notations shared by projects. Graphical components ,-
stored in the Library allow PV users to construct many
types of program visualizations simply by combining ele-
ments rather than by starting from scratch.

7.1 Types of Components in the Library

Four basic types of components are stored in the PV
Library:

1. building blocks

2. templates

3. kits

4. generators

Building blocks are fully instantiated objects or
complete modules. A code example of a building block
would be a subroutine to compute square roots. A graphic
example would be a symbol used as an iconic label, for
example the icons used to label classes of commands on the
PV menus.

Templates are objects with internal slots that must
be filled in by the user (or the system) to complete the
specification of the object. The initial PV prototype
does not support checking of information placed in slots,
but it does support automatic propagation of slot entries
so that the user is not required to fill in information
more than once. This is discussed in more detail below.

-23-

."-• o..."...-.. •

Program Visualization
Section 7 LIBRARY OF DIAGRAM AND TEXT COMPONENTS

Kits are sets of templates and building blocks, e.g.,
standard flowchart notation could be represented within a
kit.

Generators can be though of as general tools and
application programs that produce objects, either directly
or interactively. Examples of generators are text for-
matters, code formatters, and graphic menu building pro-
grams. The difference between generators and subroutines
that are used as building blocks is that building blocks
are used directly by the PV user, while generators are run
to create objects that are used.

The PV prototype as implemented supports the first
three types of components. Generators can be stored in
the Library and they can be run within UNIX shell windows;
they cannot, however, be automatically invoked when the
Library node is accessed.

To support the user in carrying out related parallel
tasks, the PV Library permits components to be grouped
into "clusters". For example, the user may want to con-
struct graphic visualizations, write code, and create the
appropriate textual documentation all at the same time.
To permit the application of assembly techniques to these
tasks, clusters of components may be stored in the
Library. For example, code for a numeric subroutine, its
dynamic visualization, and its manual page may be stored
as three building block components in a cluster in the
library. The members of the cluster may either be accessed
individually, or they may be accessed by a special
automatic method discussed at the end of this section.
Finally, note that when templates participate in clusters,
automatic propagation of slot-fillers is supported across
templates. For example, the variable name slot in a data
declaration template might be linked to a name slot on a
graphic depiction of the data type. Filling in the text
in one or the other slot can lead to automatic propagation
of the text to the related slot.

7.2 Overview of Library Organization

While the PV prototype does contain some specialized ..-
code related to the Library, the Library is basically
implemented as an application of the information linking
techniques described in Section 6. As such, Library
organization is relatively open-ended. We do, however,
suggest some methods of organization that we expect to be

-24-

Program Visualization
LIBRARY OF DIAGRAM AND TEXT COMPONENTS Section 7

of use when large numbers of components are added to the
Library.

The proposed Library organization consists of three
taxonomies:

1. general programming concepts

2. graphical structures

3. projects

component in the Library may be a descendant of any
one, or any combination of, the three major taxonomies.
The organization of each taxonomy is discussed in turn.

An attractive candidate for the taxonomy of general
programming concepts is the AFIPS Taxonomy of Computer
Science and Engineering [14]. This taxonomy contains J
about 1500-2000 nodes under the major headings:

1. hardware

2. computer systems

3. data

4. software

5. mathematics of computing

6. theory of computation

7. methodologies

8. applications/techniques (illustrative)

9. computing milieux

The taxonomy is a tree with cross-references that is at

[14] Taxon.m of Cmputer Science a Engine.eing, AFIPS
Taxonomy Committee, AFIPS Press, Arlington, VA (1980).

-25-

1i gram Visualization
Section 7 LIBRARY OF DIAGRAM AND TEXT COMPONENTS

most six nodes deep. Some additions to this taxonomy
would be necessary to reflect technological change since
its publication, and some categories (e.g., computing
milieux) might be pruned as irrelevant to the PV environ-
ment. On the whole, however, it appears that this taxon-
omy can provide a useful framework for organizing PV com-
ponents according to their relevance to programming.

To organize components according to their graphic
structure, we propose to use an approach described by Twy-
man [15]. Twyman lists what he calls "methods of confi-
gurationu by which he means "the graphic organization or
structure of a message which influences and perhaps deter-
mines the 'searching', 'reading', and 'looking' strategies
adopted by the user" (p.120). Twyman proposes the follow-
ing categories, for which we have added examples relevant
to programming:

1. Pure Linear
pure examples are rare, but some depictions of
strings belong to this class

2. Linear Interrupted
e.g., connected text

3. List
*e.g., certain types of graphic pop-up menus

4. Linear Branching
e.g., depictions of tree data structures with nodes
and connectors drawn; also, indented code

5. Matrix
e.g., tables with discrete alphanumeric elements such
as two-dimensional arrays

6. Non-Linear Directed Viewing
e.g., network diagrams

7. Non-Linear, Most Options Open
e.g., two-dimensional memory maps

A second dimension suggested by Twyman, the aMode of

115] Twyman, M., A Schema for the Study of Graphic
Language, in Proessinggf Vinihle La ngua I., 117-150.

-26-

- .-
i

Program Visualization
LIBRARY OF DIAGRAM AND TEXT COMPONENTS Section 7

Symbolization" continuum (verbal/numerical, pictorial and
verbal/numerical, pictorial, and schematic), is relevant
for PV as well. It can be used as a secondary classifica-
tion scheme within method of configuration. It might also
be useful to subclassify by whether a component is
dynamic, and, if so, what type of dynamics is used.

Finally, project-specific entries may be made and
indexed under the third proposed PV taxonomy. The project
taxonomy allows a group to identify a set of components,
both standard technical tools (e.g., Jackson diagrams,
etc.) and special-purpose components constructed for the
group. The structure of the project taxonomy is up to
individual projects. Projects can add intermediate clas-
sifying nodes to the Library information structure, so
that the organization of components for a given project is
as simple or complex as desired.

7.3 Library Access

The Library is available to the user as soon as the
PV environment is invoked. There are three ways to access
components in the Library: by navaid, by keyboard, and
automatically from a cluster entry. Each is discussed in
turn.

The main method of PV Library access is spatial, via
the Library navaid. The Library navaid, like the other
navaids proposed for the PV system, is a standard PV
diagram in a standard PV window. The navaid displays the
organization of the Library as a lattice, with nodes for
each component, cluster, and classifying category.
Graphic icons may supplement text to label major classify-
ing nodes. A more limited example navaid constructed for
the prototype is a tree with nodes connected by straight
line connectors. The user moves around the navaid by the
standard PV display command set. This set includes a com-
mand to move an entire window-full in any of four direc-
tions relative to the current window, as well as a "goto"
command that takes a node name as argument and centers the
window on that node. Note that motion over navaids
requires support for diagrams larger than a window;
although this capability was designed, it was not imple-
mented in the prototype system.

Once the user has chosen a component node, he or she
can zoom in on it to get a view of the component itself.
The zoom command has two options: to display the component

-27-

Program Visualization
Section 7 LIBRARY OF DIAGRAM AND TEXT COMPONENTS

in the current window, replacing the navaid, or to create
a separate window for viewing the component. In either
case, components can then be copied from the detail window
to an editing window. This copying operation actually
creates an instance copy, which the user can augment or
modify as desired.

A second way to access Library components is
directly, by keyboard. Since the Library is implemented
as a collection of standard objects linked via the stan-
dard information structure, the user can execute a "use"
command and key in the unique identifier of the component.
While these identifiers would not necessarily be easy to
remember (hence our emphasis on spatial access via
navaid), they are accessible to the user by executing an
"object-info" command on the component detail window. For
frequently accessed components, this direct approach can
be efficient.

The third way that library components are accessed is
automatically by the PV system itself. This is done to
pick up components within clusters, e.g., visualizations
associated with data structure types. First, an element
in a cluster is accessed by either of the two means
described above, and the component is copied to the target
window. If the component is a template, text slots in the
template may be filled in by the user. The user then
selects a special "autoaccess" button from the PV menu.
The system goes to the Library, retrieving other elements
in the cluster. In the current implementation, autoaccess
is restricted to clusters of two elements (code and visu-
alization), but extension to larger clusters would be
straightforward. The system would need to display the
types of the information links used to construct the clus-
ter, and the user would then choose the type, and hence
the component, of interest. When autoaccess finds the
component desired, it returns it with any necessary slot
filler propagations done. The component is shown in a
temporary window, and, if the user is satisfied with the
selection, a button-push causes the component to be
inserted into the editting window. This automatic access
sequence is illustrated in the PV videotape that accom-
panies this report.

In summary, the PV Library currently accomodates
three kinds of access: spatial, direct, and automatic
access within clusters.

-28-

.
-. -- . .< . -. .' . '< - -. -.. - . -. - - - ' . - ' . - - . -.. < .. • • - - - " - ." -" " - " . . - - '2-

Program Visualization
MONITORING RUNNING PROGRAMS Section 8

5..

8. MONITORING RUNNING PROGRAMS

In order for program visualization to be a practical
technique for monitoring large programs, the monitoring
must be non-intrusive. That is, visualization of compiled
code must be done without recourse to the inclusion of
special graphics statements into the source code. We
describe here techniques that can be applied to monitor
programs (other than real-time systems) that run under the
UNIX operating system. Our discussion centers on the Exe-
cution Manager module shown in Figure 1.

The Execution Manager, as its name implies, interacts
with and manages the program being monitored. It has two
main tasks: determine where the program is currently exe-
cuting, and monitor user-selected variables for updates.

Our implementation of the Execution Manager makes use
of software debugging facilities provided in the UNIX
operating system and hardware features used to implement
virtual memory. The UNIX environment provides a set of
facilities by which one process may manipulate the regis-
ters and address space of another process. Several new . -

features were added to allow the monitoring process (Exe-
cution Manager) to manipulate the memory mapping of the
monitored process (the user's program). In addition, the L
Portable C Compiler was modified to produce a supplemented
symbol table, which the Execution Manager uses to locate
variables and code in the user's program.

There were two primary goals in the implementation of
the Execution Manager: minimize any special requirements
on the monitored program, and make monitoring as efficient
as possible.

8.1 Minimizing Special Requirements

The first goal was achieved by placing the burden of
program monitoring on the C compiler and the Execution
Manager. The modified C compiler produces a complete
description of the global variables, procedures, local
variables, and source code to machine code mapping. The
uxecution Manager uses this augmented symbol table to map

-29-

4 . . - - .- - . - - --. .

Program Visualization
Section 8 MONITORING RUNNING PROGRAMS

symbol names into addresses in the monitored process. It
should be noted that the C compiler is a modified version
of the one distributed by U.C. Berkeley. Berkeley's ver-
sion produces a very complete symbol table; the compiler
was modified to correct the few deficiencies that it had.

In order to monitor a particular program, the only
requirements are that it be compiled by the modified C -
compiler and that it be linked with a special assist rou-
tine described below. The code generated by the modified
C compiler is identical to that generated by the conven-
tional compiler. That is, there are no performance penal-
ties in using the modified compiler. The only difference
is the larger symbol table that is produced.

8.2 Efficiency

The second goal, efficiency in program monitoring,
was supported by exploiting applicable hardware charac-
teristics. Two of the characteristics exploited are found
on nearly all machines: the single-step execution mode
and the breakpoint instruction. The third characteristic
is virtual memory, a feature common on new machines.

The single-step mode of execution is used principally
to track the execution of the monitored process. After
each machine instruction has executed, the process traps
to the operating system which then notifies the Execution
Manager. The Execution Manager reads the current value of
the program counter and maps the value into a file name,
procedure name, and line number in the source code using
the mapping provided by the compiler in the symbol table.
This information then can be used for highlighting a line
of code in a source code display or highlighting a pro-
cedure invocation on a stack.

The breakpoint instruction also is used to track exe-
cution, but at a coarser granularity. Although the user
may insert breakpoints anywhere in the code, the most com-
mon use of the breakpoint is at the beginning of a pro-
cedure that contains local variables to be monitored.

Our use of virtual memory is less self-evident, and
we spend the rest of this section discussing it. In order
to maintain an accurate display of data structures which
the user has selected for viewing, the Execution Manager
must detect any updates. There are several ways in which
this detection might be done: analyze the executing

-30-

.

Program Visualization
MONITORING RUNNING PROGRAMS Section 8

program for all assignments to the selected data struc-
tures; examine each data structure after every instructionfor value changes; tag the data structures so that an

update will cause an event. These approaches are dis-
cussed below.

Code analysis will catch most, but not all, assign-
ments. Programs written in languages that allow indirect
references through pointers (as in C) or which allow the
dynamic creation of data structures at run-time (through
memory allocation routines) may have "hidden" assignments
in them. Examining each data structure after every
instruction is very inefficient and slows the speed of
execution of the monitored process significantly. Tagging
the data structures is the most general approach, but it
suffers from several limitations: most machines do not
allow individual memory locations to be tagged; local
variables pose a problem because their locations in memory
are not fixed; and register variables usually cannot be

I tagged.

To overcome these limitations, the PV implementation
uses a variation on tagged memory. Instead of tagging
individual memory locations, an entire page is tagged. By
setting the protection of a page that contains a data
structure being monitored to be read-only, a trap will
occur whenever a write occurs on that page. The Execution
Manager then checks to see whether the address(es) just
written include a data structure which it is monitoring.
If so, the new value is read and displayed.

The process of catching updates works in a straight-
forward way for global and static variables because their
addresses are fixed at load time and do not change. How-
ever, variables local to a procedure are allocated space
on the stack. Thus their real addresses will vary,
depending on the history of procedure invocations. To
overcome this problem, the Execution Manager sets a spe-
cial breakpoint at the beginning of each procedure that
contains local variables to be monitored. When one of
these breakpoints is executed, the following steps are
performed:

1. Record the value of the stack pointer at that point.

2. Copy the current stack frame (corresponding to the
procedure just invoked) on the stack to make room for
a new interposed stack frame. This new frame
represents the context of the special assist routine
mentioned earlier and is used during the cleanup
after the watched procedure returns.

-31-

• . o.

Program Visualization
Section 8 MONITORING RUNNING PROGRAMS

3. Set the stack page(s) that contain the local vari-
ables to be read-only.

4. Resume execution of the interrupted procedure.

Execution continues as in the case of global variables.
Traps will occur when the protected stack pages are writ-
ten to. When the procedure returns, it returns to the
special assist routine. The assist routine signals the
Execution Manager that a procedure that had local vari-
ables being monitored has returned. The Execution Manager
then resets the protection on the pages and resumes execu-
tion of the monitored program.

The implementation of the Execution Manager has been
described. The Execution Manager monitors the status of
the executing program in such a way as to minimize the
effects of the monitoring on performance. This is
achieved by means of modifications to the C compiler used
to compile the monitored programs and by extending the
UNIX kernel to allow one process access to another pro-
cess' memory map.

7.

-32-

°.....
...-. "

Program Visualization
CONCLUSIONS Section 9

9. CONCLUSIONS

We expect on-line, interactive graphics to have a
profound impact on software development, analogous to the
way that word processors have affected the production of
text. With respect to static graphics, the multi-
dimensional graphic information structure that we have S
developed for PV will allow the programmer to move easily
between pieces of related information (e.g. requirements
and system structure). With respect to dynamic graphics,
PV's animated views of program execution can help program-
mers achieve a deeper and more accurate understanding of
the behavior of their programs. .

The work done under this contract has led to a better
understanding of the role of diagrams, particularly
dynamic diagrams, in the software development lifecycle.
Because the research area is relatively new, however, con-
siderable work remains to be done. One challenge is the I.
graphical depiction of very large data structures. The PV
graphic representation supports multiple levels of detail
so that users can view more detail as needed. The
requisite support for data abstraction is not present
within C, however, so that this technique can be best
explored in the context of a language such as Ada. L

Another challenging problem is the controlled use of
dynamic graphics. The PV project has explored techniques
for drawing the user's attention to parts of the display
that are about to change. More work must be be done, how-
ever, to insure that dynamics enhance the clarity of the S
visualization. A more complete dynamic vocabulary
appropriate to programming needs to be developed, with
particular attention paid to the demands of visualizations -.-.
(both graphic and text) that are so large that they can
only be viewed in segments.

-33--

. 2.

-33- .I.* _____

I Program VisuLization
Section 9 CONCLUSIONS

-34-

Program VisualizationREFERENCES Section 10

10. REFERENCES

0

[I] Balzer, R.M., EXDAMS - EXtendable Debugging and Moni-
toring System, AFIPS Joint Spring Computer ConfgeJr e.
(1969) 567-580.

[2] Baecker, R.M. and Marcus, A., On Enhancing the Inter-
face to the Source Code of Computer Programs, Human £ac-
torn in Computing SysJem , CHI83 Conference Proceedings,
Association for Computing Machinery, New York (1983) 251-
255.

[3] Baecker, R.M., Sorting Out Sorting, 16mm color,
sound, 25 minutes (Dynamic Graphics Project, Computer Sys-
tems Research Group, Univ. of Toronto, 1981).

[4] Baecker, R.M., Two Systems which Produce Animated
Representations of the Execution of Computer Programs, ACM
SGCSE Blletin, 7, 1 (Feb. 1975) 158-167. p

[5] Brown, M.H. and Sedgewick, R, A System for Algorithm
Animation, Cmpute~r Graphics, 18, 3 (July 1984) 177-186.

[6] Dionne, M.S. and Mackworth, A.K., ANTICS: A System
for Animating LISP Programs, Computer Graphics and Image
Processing, 7 (1978) 105-119.

[7] Galley, S.W. and Goldberg, R.P., Software Debugging:
The Virtual Machine Approach, Proceedings: ACM Annual
Conference (1974) 395-401.

[8] Herot, C.F., Brown, G.P., Carling, R.T., Friedell,
M., Kramlich, D., Baecker, R.M., An Integrated Environment
for Program Visualization, in Schneider, H.J. and Wasser-
man, A.I. (eds.), Automae Tools fr Informati n ,s
Design, North Holland, Amsterdam (1982).

[9] Herot, C.F., Carling, R.T., Friedell, M., Kramlich,
D., Design for a Program Visualization System, Technical
Report CCA-81-04 (January 1981), Computer Corp. of Amer-
ica, Cambridge, MA.

-35-3 . ., " .. •.

Program Visualization
Section 10 REFERENCES

[101 Herot, C.F., Carling, R.T., Friedell, M., Kramlich,
D., A Prototype Spatial Data Management System, SI.GGAPl'80 iin: APo/SAP (1980) 63-70.

[11] Kramlich, D., Brown, G.P., Carling, R.T., Herot,
C.F., Program Visualization: Graphics Support for Scftware
Development, ACM/IEEE 20th Design AJ1omation Cnfernce
(June 27-29 1983) Miami Beach, Florida.

(12] Knowlton, K.C., L6: Bell Telephone Laboratories Low-
Level Linked List Language, two black and white films,
sound (Bell Telephone Laboratories, Murray Hill, New Jer-
sey, 1966).

[13] Myers, B.A., Incense: A System for Displaying Data
Structures, Comput Graph.L, 17, 3 (July 1983), 115-126.

[141 Tax.nofn1 Compute Scienc and Engineering, AFIPS .

Taxonomy Committee, AFIPS Press, Arlington, VA (1980).

[15] Twyman, M., A Schema for the Study of Graphic
Language, in Priocessing f Visibl Language I., 117-150.

[16] Teitelbaum, R.T., The Cornell ... gram Synthesizer: A
Microcomputer Implementation of PL/CS, TR 79-370 (1979),
Department of Computer Science, Cornell Univ.

[17] Teitelman, W., A Display Oriented Programmer's Assis-
tant, Fifth International Joint Cnference .n ArIfic ial'
Intelligence (1977) 905-915.

-36-

..
....................................

o...........................

Program Visualization
PUBLICATIONS AND MAJOR PRESENTATIONS Section 11

11. PUBLICATIONS AND MAJOR PRESENTATIONS

December 1981

Christopher Herot, Mark Friedell, and Diane Smith
took part in a DARPA conference organized by Craig Fields
of the System Sciences Division. Copies of the presenta-
tions were compiled in "DARPA Conference on Computer
Software Graphics", Key West Florida, Dec. 13-15 1981.

January 1982

Christopher Herot and Gretchen Brown participated in
the IFIP WG 8.1 Working Conference on Automated Tools for
Information Systems Design and Development, New Orleans,
26-28 January, 1982. The paper presented at this confer-
ence, "An Integrated Environment for Program Visualiza-
tion", appeared in Schneider and Wasserman (eds.),
Automated Tools for Information Systems Design, North-
Holland Publishing Co., 1982.

February 1982

Christopher Herot gave a presentation on PV at a
meeting of the Northeastern ACM Chapter on February 18.

March 1983

Gretchen Brown was a panelist at the ACM
SIGSOFT/SIGPLAN Symposium on High-Level Debugging. The
position paper for this workship appeared as: Christopher
F. Herot, David Kramlich, Richard T. Carling, Gretchen P.
Brown Debugging in an Integrated Graphics Programming
Environment, Preprint of the Proceedings of the ACM
SIGSOFT/SIGPLAN Symposium on High-Level Debugging, 1983
March 20-23, Pacific Grove, California.

May 1983 S

Christopher Herot, David Kramlich, and Paul Souza
(graphic designer affiliated with WGBH) participated in
the DARPA Program Visualization Conference, organized by
Clinton Kelly of the System Sciences Division. L.

-37-

.. .°°

.

Program Visualization
Section 11 PUBLICATIONS AND MAJOR PRESENTATIONS

June 1983

David Kramlich presented a paper at the ACM/IEEE
Design Automation conference, which appeared as: David
Kramlich, Gretchen P. Brown, Richard T. Carling, Christo-
pher F. Herot Program Visualization: Graphics Support for .
Software Development, ACM/IEEE 20th Design Automation
Conference, June 27-29 1983, Miami Beach, Florida.

-.-

- °"

S. . -

p.-..

-38-.o

m-_- l

.

. -°

.

DISTRIBUTION LIST

Defense Documentation Center 12 copies S
Cameron Station
Alexandria, VA 22314

Office of Naval Research
Arlington, VA 22217 : -

Information Systems Program (437) 2 copies
Code 200 1 copy
Code 455 1 copy
Code 458 1 copy

Office of Naval Research
Eastern/Central Regional Office 1 copy
Dldg. 114 Section D
666 Summer Street
Boston, MA 02210

Office of Naval Research
Branch Office, Chicago 1 copy
536 South Clark Street
Chicago, IL 60605

Office of Naval Research
Western Regional Office 1 copy
1030 East Green Street t.
Pasadena, CA 91106

Naval Research Laboratory
Technical Information Division, Code 2627 6 copies
Washington, DC 20375

Dr. A. L. Slafkosky
Scientific Advisor 1 copy
Commandant of the Marine Corps (RD-l)
Washington, DC 20380

Naval Ocean Systems Center
Advanced Software Technology Division 1 copy
Code 5200
San Diego, CA 92152

Mr. E. H. Gleissner
Naval Ship Research & Development Center 1 copy
Computation & Mathematics Department
Bethesda, MD 20084

L

-39-

... ~~

Capt. Grace M. Hopper (008)
Naval Data Automation Command 1 copy
Washington Navy Yard
Bldg. 166
Washington, DC 20374

Defense Advanced Research Projects Agency
Attn: Program Management/MIS 3 copies
1400 Wilson Boulevard
Arlington, VA 22209

Mr. Robert J. Power 1 copy
DCRB-DCB-B8
Administrative Contracting Officer
Defense Contract Administration Services
Management Area, Boston
495 Summer StreetBoston, MA 02210 -

-40-

. . . .

.

Pt P

~w 40-f,.,~

, Itixq,

Ft. 'k -44 /

S.4I 1A'

14 , -1',

1,1

WK '4 ~~ .

N ' t',. '

